Reactivity of Cinnamonitriles with 2-Cyano- and 2-Ethoxycarbonylacetohydrazides: A Novel One-step Preparation and Crystal Structure of 3-Oxopyrazolo[3,4-b]pyridines

Ali Hadi, ${ }^{a}$ Nazario Martin, ${ }^{a}$ Carmen Méndez, ${ }^{a}$ Margarita Quinteiro, ${ }^{a}$ Carlos Seoane, ${ }^{a}$ José L. Soto, ${ }^{a}$ Armando Albert ${ }^{b}$ and Félix H. Cano ${ }^{b}$
${ }^{a}$ Departamento de Química Orgánica, Facultad de Química, Universidad Complutense, 28040-Madrid, Spain
${ }^{\text {b }}$ U.E.I. Cristalografía, Instituto Rocasolano, CSIC, Serrano 119, 28040-Madrid, Spain

Abstract

A novel one-step synthesis of pyrazolo[3,4-b]pyridines 8 from α-benzoylcinnamonitriles and 2^{\prime} -acetyl-2-cyanoacetohydrazide 2 is described. The X-ray crystallographic analysis revealed the presence of the enol tautomer and the existence of a strong network of hydrogen bonds. The use of 2-ethoxycarbonylacetohydrazide derivatives 12 as starting materials led only to the intermediate dihydro-2-pyridones 13. 2-Cyanoacetohydrazide 11 led to the novel triazolo[1,5-a]pyridinones 15.

We have previously described a very convenient, one-step method for the synthesis of $[1,2,4]$ triazolo[$1,5-a$]pyridines 1 by reaction of N-substituted 2 -cyanoacetohydrazides 2 with 2 cyanocinnamonitriles 3. ${ }^{1}$ The experimental procedure that leads to 1 as the piperidinium salt, from which compound 1 was liberated by neutralization, proved to be of general application. Interestingly, substituting the alkoxycarbonyl group for the cyano group in the cinnamonitriles 3 led to a competitive cyclization to pyrazolo[3,4-b]pyridinones 4 which were also obtained, in one step, as the piperidinium salt that upon neutralization gave the neutral pyrazolo $[3,4-b]$ pyridinones $4 .^{2}$

Taking into account the effect of the substituents on the course of the cyclization, we have investigated the reaction of 2benzoylcinnamonitriles 5 with N -acyl-2-cyanoacetohydrazide 2. In this paper we report these results, from which novel pyrazolo[$3,4-b]$ pyridines 8 resulted. The absence now of a carbonyl group in the pyridine ring, in comparison with 1 , is responsible for the direct formation of the neutral molecule. To the best of our knowledge, this is the first one-pot reaction for the synthesis of these neutral heterocyclic systems. ${ }^{3}$ On the other hand, we have prepared 2^{\prime}-benzoyl-2-ethoxycarbonylacetohydrazide 12 and carried out the reaction with 2 cyanocinnamonitriles 3a and 2-alkoxycarbonylcinnamonitriles 3b. Finally, the reaction of 2 -cyanoacetohydrazide 2 a with 2 alkoxycarbonylcinnamonitrile 3 bb led to the 1,6-diamino-2pyridone 14^{4} which reacted with acetic anhydride to yield the corresponding substituted [1,2,4]triazolo[1,5-a]pyridinone 15.

Formation of pyrazolo $[3,4-b]$ pyridine 8 can be rationalized as depicted in Scheme 1. The Michael addition of the anion of the 2^{\prime}-acetyl-2-cyanoacetohydrazide 2, generated in the basic

Scheme 1
medium, to the 2-benzoylcinnamonitriles 5 leads to the adducts 6. Nucleophilic attack by a nitrogen at the cyano group through a 5 -exo-dig cyclization ${ }^{5}$ forms the aminopyrazole intermediate 7 which undergoes a subsequent regioselective 6 -exo-trig cyclization followed by dehydration and spontaneous aromatization to the novel pyrazolo[3,4-b]pyridine 8 . Compounds 8 were thus obtained as stable white solids with high melting points in moderate yields (see Experimental section).
It is worth mentioning that the alternative 6 -exo-dig cyclization in 7, leading to the pyrazolo[3,4-b] pyridine 9 was not observed. This result is in contrast with the previously reported synthesis of 1,6 -diamino-2-pyridones ${ }^{6}$ in which the cyclizations by the cyano or carbonyl groups were temperature controlled. Here, pyrazolo[3,4-b]pyridine 8 was obtained at reflux temperature as the only reaction product. At room temperature, formation of a complex mixture was observed from which only compound 10 , resulting from the retro-Michael reaction of the intermediate 6 , could be identified.
Compounds 8 were obtained as the neutral pyrazolo[3,4b]pyridine system. These compounds showed, in addition to the cyano band that appears at $2220 \mathrm{~cm}^{-1}$, a characteristic broad band at $2500-3300 \mathrm{~cm}^{-1}$ in their IR spectra. The H^{1} NMR spectra showed the NH group as a small broad singlet at 11.2-

Table 1 Geometrical characteristics of compound $8 \mathbf{8}$

(a) Bond distances (\AA)			
$\mathrm{N}(1)-\mathrm{C}(2)$	$1.341(5)$	$\mathrm{C}(11)-\mathrm{C}(16)$	1.387(5)
$\mathrm{N}(1)-\mathrm{C}(9)$	1.329(4)	$\mathrm{C}(12)-\mathrm{C}(13)$	1.387(6)
$\mathrm{C}(2)-\mathrm{N}(3)$	1.339(4)	$\mathrm{C}(13)-\mathrm{C}(14)$	$1.376(8)$
$\mathrm{C}(2)-\mathrm{C}(6)$	$1.395(4)$	$\mathrm{C}(14)-\mathrm{C}(15)$	1.359(8)
$\mathrm{N}(3)-\mathrm{N}(4)$	1.380(4)	$\mathrm{C}(15)-\mathrm{C}(16)$	1.380 (6)
$\mathrm{N}(4)-\mathrm{C}(5)$	1.308(4)	$\mathrm{C}(17)-\mathrm{N}(18)$	1.144(5)
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.439(5)$	$\mathrm{C}(19)-\mathrm{C}(20)$	$1.381(6)$
$\mathrm{C}(5)-\mathrm{O}(10)$	$1.326(4)$	$\mathrm{C}(19)-\mathrm{C}(24)$	$1.393(5)$
$\mathrm{C}(6)-\mathrm{C}(7)$	1.401(4)	$\mathrm{C}(20)-\mathrm{C}(21)$	1.387(7)
$\mathrm{C}(7)-\mathrm{C}(8)$	$1.407(5)$	$\mathrm{C}(21)-\mathrm{C}(22)$	1.370 (6)
$\mathrm{C}(7)-\mathrm{C}(11)$	1.477(4)	$\mathrm{C}(22)-\mathrm{C}(23)$	1.371(7)
$\mathrm{C}(8)-\mathrm{C}(9)$	$1.420(4)$	$\mathrm{C}(23)-\mathrm{C}(24)$	$1.387(7)$
$\mathrm{C}(8)-\mathrm{C}(17)$	$1.437(4)$	$\mathrm{N}(25)-\mathrm{C}(26)$	1.141(7)
$\mathrm{C}(9)-\mathrm{C}(19)$	$1.494(5)$	$\mathrm{C}(26)-\mathrm{C}(27)$	$1.418(7)$
$\mathrm{C}(11)-\mathrm{C}(12)$	$1.392(5)$		
(b) Bond angles (${ }^{\circ}$)			
$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(9)$	115.0(3)	$\mathrm{N}(1)-\mathrm{C}(9)-\mathrm{C}(19)$	113.8(3)
$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(6)$	127.2(3)	$\mathrm{C}(7)-\mathrm{C}(11)-\mathrm{C}(16)$	121.6(3)
$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{N}(3)$	124.3(3)	$\mathrm{C}(7)-\mathrm{C}(11)-\mathrm{C}(12)$	119.1(3)
$\mathrm{N}(3)-\mathrm{C}(2)-\mathrm{C}(6)$	108.5(3)	$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(16)$	119.3(3)
$\mathrm{C}(2)-\mathrm{N}(3)-\mathrm{N}(4)$	110.4(2)	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	119.5(4)
$\mathrm{N}(3)-\mathrm{N}(4)-\mathrm{N}(5)$	106.8(3)	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	120.1(4)
$\mathrm{N}(4)-\mathrm{C}(5)-\mathrm{O}(10)$	122.6(3)	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	120.9(4)
$\mathrm{N}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	110.9(3)	$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	119.9(5)
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{O}(10)$	126.6(3)	$\mathrm{C}(11)-\mathrm{C}(16)-\mathrm{C}(15)$	120.5(4)
$\mathrm{C}(2)-\mathrm{C}(6)-\mathrm{C}(5)$	103.4(3)	$\mathrm{C}(8)-\mathrm{C}(17)-\mathrm{N}(18)$	179.1(4)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	138.0(3)	$\mathrm{C}(9)-\mathrm{C}(19)-\mathrm{C}(24)$	123.1(3)
$\mathrm{C}(2)-\mathrm{C}(6)-\mathrm{C}(7)$	118.6(3)	$\mathrm{C}(9)-\mathrm{C}(19)-\mathrm{C}(20)$	118.0(3)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(11)$	123.2(3)	$\mathrm{C}(20)-\mathrm{C}(19)-\mathrm{C}(24)$	118.9(3)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	114.7(3)	$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(21)$	121.0(3)
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(11)$	122.0(3)	$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(22)$	119.7(4)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(17)$	118.0(3)	$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)$	120.1(4)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	122.1(3)	$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(24)$	120.9(4)
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(17)$	119.6(3)	$\mathrm{C}(19)-\mathrm{C}(24)-\mathrm{C}(23)$	119.5(3)
$\mathrm{N}(1)-\mathrm{C}(9)-\mathrm{C}(8)$	122.4(3)	$\mathrm{N}(25)-\mathrm{C}(26)-\mathrm{C}(27)$	179.1(7)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(19)$	123.7(3)		

11.4 ppm . According to the molecular weight several isomeric structures could be drawn and, consequently, the pyrazolo[3,4b]pyridine structure was unambiguously determined by X-ray crystallographic analysis. Scarce crystallographical data were found in the literature on this fused system. ${ }^{7}$ The geometrical features of compound $8 \mathbf{a}$ are listed in Table 1. A perspective drawing of 8a with the atomic labelling used in the crystallographic study is presented in Fig. 1. The bond distances and angles of compound 8a reveal a delocalization of the π-electrons of the fused system, which exhibit a somewhat distorted planarity. The pyridine ring showed a boat conformation with $\mathrm{C}-2$ and $\mathrm{C}-8$ out-of-the-plane and the pyrazole ring in an envelope conformation with the $\mathrm{N}-3$ atom. The phenyl rings are not orthogonal to the fused heterocyclic system, forming $54.5(1)^{\circ}$ and $40.3(1)^{\circ}$ respectively (see Fig. 1).

It is worth noting that, in the solid state, compound 8a appears as the enolic tautomer. This result is in agreement with the previously described one for the related pyrazolo[4,3c]pyridines which exist in the hydroxy form. ${ }^{8}$ The majority of reports ${ }^{3}$ on 1 - and 2 -substituted 3 -hydroxypyrazolopyridines, however, quote IR absorptions attributed to $v(\mathrm{CO})$. The crystal packing showed the presence of hydrogen bonds and aromatic interactions. Thus, each molecule is strongly linked by hydrogen bonds to a molecule of solvent (MeCN) and to another heterocyclic molecule forming dimers $[\mathrm{N}(3)-\mathrm{H}(3) \cdots \mathrm{N}(25)$, 2.93(1) $\AA, 174(4)^{\circ}, x, y+1, z$ and $\mathrm{O}(10)-\mathrm{H}(10) \cdots \mathrm{N}(4)$, $2.721(4) \AA, 174(4)^{\circ}, 1-x, 1-y,-z$; Donor-H \cdots Acceptor, Distance D...A, Angle D-H...A).

There is also a complex system of aromatic interactions, involving all the rings of the molecule, and showing both a

Fig. 1 Molecular structure of compound 8a showing the atomic numbering. ${ }^{21}$ The solvent molecule is not shown.

Fig. 2 Crystal packing of compound 8a, as projected along the c axis, ${ }^{22}$ showing the intramolecular interactions.
stacking pattern and a herringbone motif in the three directions of the crystal ${ }^{9,10}$ (see Fig. 2).

Taking into account the required presence of the cyano group of the cyanoacetohydrazide in the intermediate 6 to form the pyrazolo $[3,4-b]$ pyridine 8, we carried out (Scheme 2) the reaction of 2^{\prime}-benzoyl-2-ethoxycarbonylacetohydrazide 12 with 2-cyanocinnamonitrile 3 to explore the possible alternative regioselective cyclizations. However, as a simpler case, we used cinnamonitrile bearing a second cyano group 3a ($\mathrm{R}=\mathrm{CN}$). Compound 12 could be obtained by careful acylation of ethoxycarbonylacetohydrazide ${ }^{11} 11$ with benzoyl chloride at $0^{\circ} \mathrm{C}$. Reaction of 2^{\prime}-benzoyl-2-ethoxycarbonylacetohydrazide 12 with 2-cyanocinnamonitrile 3 a in alcoholic solution at room temperature and in the presence of piperidine led, in all cases, to the corresponding N-substituted 3,4-dihydro-2-pyridones 13 as the only isolated product in good yields. The reaction of 12 with 2-alkoxycarbonylcinnamonitriles 3b yielded, in a similar way,

$$
\begin{aligned}
13 \text { a } \mathrm{Ar} & =\mathrm{Ph}, \mathrm{R}^{1}=\mathrm{CN} \\
\text { b } \mathrm{Ar} & =p-\mathrm{MeC}_{6} \mathrm{H}_{4}, \mathrm{R}^{1}=\mathrm{CN} \\
\text { c } \mathrm{Ar} & =p \cdot \mathrm{MeOC}_{6} \mathrm{H}_{4}, \mathrm{R}^{1}=\mathrm{CN} \\
\text { d } \mathrm{Ar} & =p \cdot \mathrm{ClC}_{6} \mathrm{H}_{4}, \mathrm{R}^{1}=\mathrm{CN} \\
\text { e } \mathrm{Ar} & =p-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4}, \mathrm{R}^{1}=\mathrm{CN} \\
\text { i } \mathrm{Ar} & =\mathrm{Ph}, \mathrm{R}^{1}=\mathrm{CO}_{2} \mathrm{Me} \\
\text { g } \mathrm{Ar} & =p-\mathrm{MeC}_{6} \mathrm{H}_{4}, \mathrm{R}^{1}=\mathrm{CO}_{2} \mathrm{Me} \\
\text { h } \mathrm{Ar} & =p \cdot \mathrm{MeOC}_{6} \mathrm{H}_{4}, \mathrm{R}^{1}=\mathrm{CO}_{2} \mathrm{Me}
\end{aligned}
$$

$$
\text { i } \mathrm{Ar}=p-\mathrm{CIC}_{6} \mathrm{H}_{4}, \mathrm{R}^{1}=\mathrm{CO}_{2} \mathrm{Me}
$$

| $\mathrm{Ar}=p \cdot \mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4}, \mathrm{R}^{1}=\mathrm{CO}_{2} \mathrm{Me}$
k $\mathrm{Ar}=\mathrm{Ph}, \mathrm{R}^{1}=\mathrm{CO}_{2} \mathrm{Et}$
l $\mathrm{Ar}=p \cdot \mathrm{MeC}_{6} \mathrm{H}_{4}, \mathrm{R}^{1}=\mathrm{CO}_{2} \mathrm{Et}$
m $\mathrm{Ar}=p-\mathrm{MeOC}_{6} \mathrm{H}_{4}, \mathrm{R}^{1}=\mathrm{CO}_{2} \mathrm{Et}$
n $\mathrm{Ar}=\rho \cdot \mathrm{CIC}_{6} \mathrm{H}_{4}, \mathrm{R}^{1}=\mathrm{CO}_{2} \mathrm{Et}$

- $\mathrm{Ar}=\rho-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4}, \mathrm{R}^{1}=\mathrm{CO}_{2} \mathrm{Et}$

$$
\begin{aligned}
15 \text { a } \mathrm{Ar} & =\mathrm{Ph} \\
\text { b } \mathrm{Ar} & =p-\mathrm{MeC}_{6} \mathrm{H}_{4} \\
\text { c } \mathrm{Ar} & =p-\mathrm{MeOC}_{6} \mathrm{H}_{4} \\
\text { d } \mathrm{Ar} & =p-\mathrm{CIC}_{6} \mathrm{H}_{4} \\
\text { e } \mathrm{Ar} & =p-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4}
\end{aligned}
$$

Scheme 2 Reagents and conditions: i, $\mathrm{BzCl}, 0^{\circ} \mathrm{C}, \mathrm{K}_{2} \mathrm{CO}_{3}$; ii, $\mathrm{EtOH}-$ piperidine, room temp. or reflux; iii, dry MeOH-piperidine, room temp.; iv, reflux
the corresponding 5-alkoxycarbonyl-3,4-dihydro-2-pyridones 13.

Formation of 13 could be accounted for by conjugate addition of the carbanion of $\mathbf{1 2}$ to the substituted cinnamonitrile, followed by regioselective 6 -exo-dig cyclization to the pyridine ring. Attempts to form the triazolo $[1,5-a]$ pyridine ${ }^{1}$ from 13 by carrying out the reaction at reflux temperature led only to compound 13 in a slightly improved yield.

The influence of the electron-withdrawing substituent in position 2 of the acetohydrazide could also be observed in the reaction of 2 -cyanoacetohydrazide 11b with 2 -methoxycarbonylcinnamonitriles 3b, which yielded the corresponding aromatic 1,6-diamino-2-pyridones 14 which were isolated in moderate yields. Treatment of 14 with acetic anhydride at reflux temperature led to the novel triazolo[1,5-a]pyridinones 15 in good yields (Scheme 2). The use of catalytic amounts of piperidine gave under these reaction conditions, compounds 15 as stable neutral solids.

In conclusion, we have developed a novel, one-step procedure to prepare pyrazolo[3,4-b]pyridines from alicyclic starting compounds by modification of a recently described procedure for synthesizing triazolo $[1,5-a]$ pyridinones. ${ }^{1}$ We have studied the molecular structure of these 3 -oxopyrazolo $[3,4-b]$ pyridines by X-ray crystallography and confirmed the presence, in the solid state, of the more favoured enol tautomer. Additionally, we have evaluated the use of N -acyl-2-ethoxycarbonylacetohydrazide for the preparation of these fused heterocyclic systems. Finally, a novel series of triazolo[1,5-a]pyridinones 15 have been obtained from 2-cyanoacetohydrazide in a two-step procedure.

Experimental

M.p.s were determined in capillary tubes in a GallenKamp instrument and are uncorrected. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded at 300 MHz on a Varian VXR 300 S spectrometer. All NMR spectra were recorded for $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$ solutions, chemical shifts being given as δ values with respect to SiMe_{4} as the internal standard. IR spectra were measured with a Perkin-Elmer 781 instrument for KBr pellets. Mass spectra were obtained with a Varian MAT 711 machine. Microanalyses were performed by the Universidad Complutense Microanalytical Service. The reactions were monitored by TLC performed on silica gel plates (Merck-60F) and using chloroform-methanol ($1: 1$) or toluene-ethyl acetate ($1: 1$) as the eluent.
Cyanoacetohydrazide, malononitrile, ethyl cyanoacetate, methyl cyanoacetate and piperidine were obtained from commercial sources (Aldrich and Merck) and were used without further purification. Aromatic aldehydes were distilled before use. Benzylidenemalononitrile was also a commercial product (Aldrich), but the remaining arylidenemalononitriles and arylidenecyanoacetates were prepared from aromatic aldehydes by following standard procedures. ${ }^{12}$

4-Aryl-5-cyano-6-phenylpyrazolo[3,4-b]pyridin-3(2H)-one 8: General Procedure.-To a suspension of 2^{\prime}-acetyl-2-cyanoacetohydrazide ($0.5 \mathrm{~g}, 3.55 \mathrm{mmol}$) and the corresponding 2 benzoylcinnamonitrile (3.55 mmol) in dry ethanol ($5 \mathrm{~cm}^{3}$), a few drops of piperidine were added. The reaction mixture was refluxed for a variable length of time ($24-36 \mathrm{~h}$) until the starting material was exhausted and a solid had been precipitated. It was filtered off and recrystallized from the appropriate solvent.

5-Cyano-4,6-diphenylpyrazolo[3,4-b]pyridin-3(2H)-one 8a. This compound was obtained after 24 h in 35% yield, m.p. 293$294^{\circ} \mathrm{C}$ (from MeCN) (Found: C, 72.7; H, 3.8; N, 17.75. $\mathrm{C}_{19} \mathrm{H}_{12} \mathrm{~N}_{4}$ O requires C, $73.0 ; \mathrm{H}, 3.85 ; \mathrm{N}, 17.95$); $v_{\text {max }} 3200-2500$, $2220,1590,1550,1500,1200$ and $700 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}} 7.56(6 \mathrm{H}, \mathrm{m}$, $\mathrm{ArH}), 7.68(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.86(2 \mathrm{H}, \mathrm{d}, \mathrm{ArH})$ and $11.29(1 \mathrm{H}, \mathrm{s}$, NH); $\delta_{\mathrm{C}} 98.31,100.99$ (C-3a, -5), 118.49 (CN), 128.03 (2 C), 128.43 (2 C), 129.43 (2 C), 129.95 (2 C), 130.32, 132.14, 133.39, $138.31(\mathrm{ArH})$, 151.71, 153.41, $154.97(\mathrm{C}-4,-6,-7 \mathrm{a})$ and 161.07 (CO); m / z (relative intensity): $312\left(\mathrm{M}^{+}, 80\right), 311$ (100) and 255 (10).

Crystal data for compound 8a: $\mathrm{C}_{19} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{O} \cdot \mathrm{MeCN}, M_{\mathbf{w}}=$ 339.376, triclinic, $P \mathrm{~T}, a=12.181(1) \AA, b=11.761(2) \AA, c=$ 7.0312(3) $\AA, \alpha=90.52(1)^{\circ}, \beta=104.63(1)^{\circ}, v=108.81(1)^{\circ}$, $V=918.1(2) \AA^{3}, Z=2, D_{c}=1.23 \mathrm{~g} \mathrm{~cm}^{-3}, F(000)=354, \mu=$ $5.96 \mathrm{~cm}^{-1}$. Refined cell parameters were obtained from setting angles of 62 reflections. A prismatic colourless crystal (0.40 $\times 0.12 \times 0.10 \mathrm{~mm}$) was used for the diffractometric analysis.

Data collection: Automatic four-circle diffractometer Philips PW 1100 with graphite orientated monochromated $\mathrm{Cu}-\mathrm{K} \alpha$ radiation. The intensity data were collected using the $\dot{\omega} / 2 \theta$ scan mode between $2<\theta>65^{\circ}$; two standard reflections were measured every 90 min with no intensity variation. A total of 3121 reflections were measured and 2196 were considered as observed [$I>3 \sigma(I)$ criterium]. The data were corrected for Lorentz and polarization effects.
Structure solution and refinement: The structure was solved by direct methods using SIR $88{ }^{13}$ and DIRDIF92 ${ }^{14}$ and successive Fourier syntheses. The H atom of the OH group was located from Fourier difference. The remaining H atoms were calculated, except those involved in the solvent molecule; all of them were included in a mixed refinement. A convenient weighting scheme was applied to obtain flat dependence in $\left\langle w \Delta^{2} F\right\rangle v s .\left\langle F_{0}\right\rangle$ and $\langle\sin \theta / \lambda\rangle .{ }^{15}$ The final $R(R W)$ value was 5.9 (6.5). Atomic scattering factors for the compound were taken from International Tables for X-ray Crystallography ${ }^{16}$ and calculations were performed using XRAY80, ${ }^{17}$ XTAL, ${ }^{18}$ HSEARCH ${ }^{19}$ and PARST. ${ }^{20}$

5-Cyano-4-(p-tolyl)-3-oxo-6-phenylpyrazolo[3,4-b]pyridine 8b. This compound was obtained after 36 h in 19% yield, m.p. $300-302{ }^{\circ} \mathrm{C}$ (MeCN) (Found: C, 73.3; H, 4.25; N, 17.2. $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}$ requires C, $73.6 ; \mathrm{H}, 4.3 ; \mathrm{N}, 17.2$); $v_{\text {max }} / \mathrm{cm}^{1} 3200-$ $2500,2220,1590,1550,1500,1200$ and $700 ; \delta_{\mathrm{H}} 2.42(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3}\right), 7.36(2 \mathrm{H}, \mathrm{d}, \mathrm{ArH}), 7.56(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.85(2 \mathrm{H}, \mathrm{d}$, $\mathrm{ArH})$ and $11.2(1 \mathrm{H}, \mathrm{s}, \mathrm{NH})$.

5-Cyano-4-(p-methoxyphenyl)-3-oxo-6-phenylpyrazolo[3,4b] pyridine 8c. This compound was obtained after 24 h in 41% yield, m.p. $324-325^{\circ} \mathrm{C}(\mathrm{MeCN})$ (Found: C, $69.75 ; \mathrm{H}, 4.1$; N, 16.15. $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{2}$ requires $\mathrm{C}, 70.15 ; \mathrm{H}, 4.1 ; \mathrm{N}, 16.35$); $v_{\text {max }} / \mathrm{cm}^{-1} 3300-2500,2220,1600,1560,1510,1200$ and 700 $\mathrm{cm}^{-1} ; \delta_{\mathrm{H}} 3.87(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 7.11(2 \mathrm{H}, \mathrm{d}, \mathrm{ArH}), 7.59(3 \mathrm{H}, \mathrm{m}$, ArH), 7.68 ($2 \mathrm{H}, \mathrm{d}, \mathrm{ArH}$) and 7.87 ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$).

4-(p-Chlorophenyl)-5-cyano-3-oxo-6-phenylpyrazolo[3,4-b]pyridine 8d. This compound was obtained after 36 h in 29% yield, m.p. $312-314^{\circ} \mathrm{C}(\mathrm{MeCN})$ (Found: $\mathrm{C}, 65.4 ; \mathrm{H}, 3.1 ; \mathrm{Cl}$, 10.55; $\mathrm{N}, 16.15 . \mathrm{C}_{19} \mathrm{H}_{11} \mathrm{ClN}_{4} \mathrm{O}$ requires $\mathrm{C}, 65.8 ; \mathrm{H}, 3.15 ; \mathrm{Cl}$, $10.25 ; \mathrm{N}, 16.15) v_{\max } / \mathrm{cm}^{-1} 3200-2500,2220,1590,1550,1500$, 1200 and $700 ; \delta_{\mathrm{H}} 7.63(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.73(2 \mathrm{H}, \mathrm{d}, \mathrm{ArH}), 7.78$ (2 $\mathrm{H}, \mathrm{d}, \mathrm{ArH})$ and $11.4(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{C}} 98.53,101.02(\mathrm{C}-3 \mathrm{a},-5)$, $118.25(\mathrm{CN}), 128.14(2 \mathrm{C}), 128.4$ (2 C), 129.36 (2 C), 129.95, $131.86(2 \mathrm{C}), 132.18,134.93,138.19(\mathrm{ArH}), 150.77,151.7,154.86$ (C 4, -6, -7a) and 161.03 (CO).

2'-Benzoyl-2-ethoxycarbonylacetohydrazide 12.-To a stirred solution of 2-ethoxycarbonylacetohydrazide $10(2.7 \mathrm{~g}, 18.8$ $\mathrm{mmol})$ in water $\left(3 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$, were added benzoyl chloride $(4.3 \mathrm{~g}, 28.2 \mathrm{mmol})$ from a dropping funnel and a solution of potassium carbonate $(1.29 \mathrm{~g})$ in water $\left(1.5 \mathrm{~cm}^{3}\right)$. After 10 min a precipitate formed and this was filtered off, washed with water and recrystallized from ethanol to yield white crystals (66%), m.p. $128-130^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 57.75 ; \mathrm{H}, 5.7 ; \mathrm{N}, 11.35$. $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{4}$ requires C, $57.6 ; \mathrm{H}, 5.6 ; \mathrm{N}, 11.2$); $v_{\text {max }} / \mathrm{cm}^{-1} 3300$ $(\mathrm{NH}), 1760\left(\mathrm{CO}_{2}\right), 1670(\mathrm{CO}), 1600,1520,1500,1420,1380$, $1300,1240,1160$ and $1000 ; \delta_{\mathrm{H}} 1.21(3 \mathrm{H}, \mathrm{t}, \mathrm{Me}), 3.36(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{2}\right), 4.11\left(2 \mathrm{H}, \mathrm{q}, \mathrm{CH}_{2} \mathrm{O}\right), 7.4-7.6(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.87(2 \mathrm{H}, \mathrm{d}$, $\mathrm{ArH})$ and 10.19 and $10.49(2 \mathrm{H}, \mathrm{br}, 2 \times \mathrm{NH}) ; \delta_{\mathrm{C}} 14.25(\mathrm{Me})$, $40.87\left(\mathrm{CH}_{2}\right), 60.87\left(\mathrm{CH}_{2} \mathrm{O}\right), 127.68(2 \mathrm{C}), 128.67(2 \mathrm{C}), 132.09$ $(\mathrm{ArH}), 132.47$ (ipso ArH), 164.71, 165.49 (2 CO) and 167.46 $\left(\mathrm{CO}_{2}\right)$.

5-Substituted 6-Amino-4-aryl-1-benzoylamido-3,4-dihydro$2(1 \mathrm{H})$-pyridones 13: General Procedure.-To a solution of 2^{\prime} -benzoyl-2-ethoxycarbonylacetohydrazide $12(0.5 \mathrm{~g}, 2 \mathrm{mmol})$ and the corresponding 2 -substituted cinnamonitrile $3(2 \mathrm{mmol})$ in dry ethanol ($15 \mathrm{~cm}^{3}$), piperidine ($3-4$ drops) was added. The reaction mixture, stirred either at room temperature ($10-25 \mathrm{~h}$) or at reflux temperature ($5-10 \mathrm{~h}$), precipitated a solid. This was filtered off and recrystallized from the appropriate solvent.

6-Amino-1-benzamido-5-cyano-3-ethoxycarbonyl-4-phenyl-3,-4-dihydro-2(1H)-pyridone 13a. This compound was obtained after 20 h of stirring in 56% yield, m.p. $196-198^{\circ} \mathrm{C}(\mathrm{MeCN}-$ $\mathrm{H}_{2} \mathrm{O}$) (Found: C, $65.55 ; \mathrm{H}, 4.8 ; \mathrm{N}, 14.05 . \mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{4}$ requires C, 65.35; H, 4.95; N, 13.85%); $v_{\text {max }} / \mathrm{cm}^{-1} 3400,3310,3200,2990$, $2200,1750,1730,1700,1650,1600,1530,1440,1350,1160$ and $710 ; \delta_{\mathrm{H}}$ (diastereoisomeric mixture; major isomer) $1.07(3 \mathrm{H}, \mathrm{t}$, Me), 3.8-4.2 (4 H, m, CH2O,2 CH), 6.85-6.92 (5 H, m, ArH), $7.28-7.62(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 8.0\left(2 \mathrm{H}, \mathrm{d}, \mathrm{NH}_{2}\right)$ and $10.87-10.98(1 \mathrm{H}$, br s, NH); m / z (relative intensity) $404\left(\mathbf{M}^{+}, 5\right), 331$ (5), 284 (45), $240(20), 212$ (72), 203 (24), 163 (55), 154 (100) and 127 (100).

6-Amino-1-benzamido-5-cyano-3-ethoxycarbonyl-4-(p-tolyl)-3,4-dihydro-2(1H)pyridone 13b. This compound was obtained after 19 h of stirring in 47% yield, m.p. 184-186 ${ }^{\circ} \mathrm{C}$ ($\mathrm{MeCN}-\mathrm{H}_{2} \mathrm{O}$) (Found: C, 66.1; H, 5.1; N, 13.45. $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{4}$ requires $\mathrm{C}, 66.05 ; \mathrm{H}, 5.25 ; \mathrm{N}, 13.40) ; v_{\text {max }} / \mathrm{cm}^{-1} 3400,3310,3200$, $2990,2200,1750,1730,1700,1650,1600,1530,1440,1350,1160$
and $710 ; \delta_{\mathrm{H}}$ (diastereoisomeric mixture; major isomer) 1.1-1.2 ($3 \mathrm{H}, \mathrm{t}, \mathrm{Me}$), 2.39 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$), $3.8-4.2\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}, 2 \mathrm{CH}\right.$), $6.85(2 \mathrm{H}, \mathrm{d}, \mathrm{ArH}), 7.14-7.64(7 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 8.0\left(2 \mathrm{H}, \mathrm{d}, \mathrm{NH}_{2}\right)$ and $10.4(1 \mathrm{H}$, br s, NH).

6-Amino-1-benzamido-5-cyano-3-ethoxycarbonyl-4-(p-meth-oxyphenyl)-2-oxo-3,4-dihydro-2(1H)-pyridone 13c. This compound was obtained after 18 h of stirring in 56% yield, m.p. 144 $146^{\circ} \mathrm{C}\left(\mathrm{MeCN}-\mathrm{H}_{2} \mathrm{O}\right)$ (Found: C, 63.6; H, 4.85; N, 12.9. $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{5}$ requires C, $63.6 ; \mathrm{H}, 5.05 ; \mathrm{N}, 12.9$); $v_{\text {max }} / \mathrm{cm}^{1} 3400$, $3310,3200,2990,2200,1750,1730,1700,1650,1600,1530,1440$, 1350,1160 and $710 ; \delta_{\mathrm{H}}$ (diastereoisomeric mixture; major isomer) $1.12(3 \mathrm{H}, \mathrm{t}, \mathrm{Me}), 3.62(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.74(1 \mathrm{H}, \mathrm{d}, \mathrm{CH})$, 3.8-4.0 (3 H, m, CH $\left.\mathrm{C}_{2} \mathrm{O}, \mathrm{CH}\right), 6.68-6.8(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.15-7.55$ $(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.9\left(2 \mathrm{H}, \mathrm{d}, \mathrm{NH}_{2}\right)$ and $10.82(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH})$.

6-Amino-1-benzamido-4-(p-chlorophenyl)-5-cyano-3-ethoxy-carbonyl-3,4-dihydro-2(1H)-pyridone 13d. This compound was obtained after 16 h of stirring in 61% yield, m.p. $216-218^{\circ} \mathrm{C}$ ($\mathrm{MeCN}-\mathrm{H}_{2} \mathrm{O}$) (Found: $\mathrm{C}, 60.3 ; \mathrm{H}, 4.3 ; \mathrm{N}, 13.0 . \mathrm{C}_{22} \mathrm{H}_{19} \mathrm{ClN}_{4} \mathrm{O}_{4}$ requires $\mathrm{C}, 60.2 ; \mathrm{H}, 4.35 ; \mathrm{N}, 12.75) ; v_{\max } / \mathrm{cm}^{-1} 3400,3310,3200$, $2980,2200,1750,1730,1700,1650,1600,1530,1440,1350,1160$ and $710 ; \delta_{\mathrm{H}}($ diastereoisomeric mixture; major isomer) 1.13 ($3 \mathrm{H}, \mathrm{t}, \mathrm{Me}$), 3.9-4.3(4 H, m, $\left.\mathrm{CH}_{2} \mathrm{O}, 2 \mathrm{CH}\right), 7.0(2 \mathrm{H}, \mathrm{d}, \mathrm{ArH})$, $7.4(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.48-7.68(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 8.0\left(2 \mathrm{H}, \mathrm{d}, \mathrm{NH}_{2}\right)$ and $10.9(1 \mathrm{H}$, br s, NH).
6-Amino-1-benzamido-5-cyano-3-ethoxycarbonyl-4-(p-nitro-phenyl-3,4-dihydro-2(1H)-pyridone 13e. This compound was obtained after 18 h of stirring in 50% yield, m.p. $230-232^{\circ} \mathrm{C}$ ($\mathrm{MeCN}-\mathrm{H}_{2} \mathrm{O}$) (Found: C, 58.9; H, 4.1; N, 15.65. $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{O}_{6}$ requires $\mathrm{C}, 58.8 ; \mathrm{H}, 4.25 ; \mathrm{N}, 15.6) ; v_{\text {max }} / \mathrm{cm}^{-1} 3400,3310,3200$, $2980,2200,1750,1730,1700,1650,1600,1530,1440,1350,1160$ and $710 ; \delta_{\mathrm{H}}$ (diastereoisomeric mixture; major isomer) $1.16(3 \mathrm{H}$, $\mathrm{t}, \mathrm{Me}), 4.13\left(2 \mathrm{H}, \mathrm{q}, \mathrm{CH}_{2} \mathrm{O}\right), 4.32(1 \mathrm{H}, \mathrm{d}, \mathrm{CH}), 4.38(1 \mathrm{H}, \mathrm{d}, \mathrm{CH})$, 7.06 ($2 \mathrm{H}, \mathrm{d}, \mathrm{ArH}$), $7.53-8.0(7 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 8.22\left(2 \mathrm{H}, \mathrm{d}, \mathrm{NH}_{2}\right)$ and $10.9\left(1 \mathrm{H}\right.$, br s, NH); m / z (relative intensity) $449\left(\mathrm{M}^{+}, 10\right)$, 431 (4), 376 (4), 359 (10), 329 (80), 285 (20), 257 (90), 250 (84), 232 (24), 169 (6), 153 (100), 105 (100), 77 (100) and 45 (100).

6-Amino-1-benzamido-3-ethoxycarbonyl-5-methoxycarbonyl-4-phenyl-3,4-dihydro-2-(1H)-pyridone 13f. This compound was obtained after 25 h of stirring in 61% yield, m.p. $171-173^{\circ} \mathrm{C}$ (toluene or methanol) (Found: C, 63.35; H, 5.3; N, 9.6. $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{6}$ requires $\mathrm{C}, 63.15 ; \mathrm{H}, 5.25 ; \mathrm{N}, 9.6$); $v_{\text {max }} / \mathrm{cm}^{-1} 3400$, 3310, 3260, 2980, 1740, 1710, 1670, 1610, 1520, 1470, 1440, 1370, $1320,1270,1250,1170,770$ and $700 ; \delta_{\mathrm{H}}($ diastereoisomeric mixture; major isomer) $1.2(3 \mathrm{H}, \mathrm{t}, \mathrm{Me}), 3.5(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.8$ $(1 \mathrm{H}, \mathrm{d}, \mathrm{CH}), 4.2\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}\right), 4.6(1 \mathrm{H}, \mathrm{d}, \mathrm{CH}), 7.2-7.4(5 \mathrm{H}$, $\mathrm{m}, \mathrm{ArH}), 7.5-7.63(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 8.45\left(2 \mathrm{H}, \mathrm{d}, \mathrm{NH}_{2}\right)$ and 11.0 ($1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}$).
6-Amino-1-benzamido-3-ethoxycarbonyl-5-methoxycarbonyl-4-(p-tolyl)-3,4-dihydro-2(1H)-pyridone 13 g . This compound was obtained after 20 h of stirring in 88% yield, m.p. 202$204{ }^{\circ} \mathrm{C}$ (methanol) (Found: $\mathrm{C}, 63.7 ; \mathrm{H}, 5.65$; $\mathrm{N}, ~ 9.4$. $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{6}$ requires $\mathrm{C}, 63.85 ; \mathrm{H}, 5.55 ; \mathrm{N}, 9.3$); $v_{\text {max }} / \mathrm{cm}^{-1}$ $3400,3300,2980,1740,1710,1670,1610,1520,1470,1440$, $1370,1320,1270,1250,1170,800$ and $720 ; \delta_{\mathrm{H}}($ diastereoisomeric mixture; major isomer) $1.2(3 \mathrm{H}, \mathrm{t}, \mathrm{Me}), 2.27(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 3.5$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 3.73 ($1 \mathrm{H}, \mathrm{d}, \mathrm{CH}$), $4.19\left(2 \mathrm{H}, \mathrm{q}, \mathrm{CH}_{2} \mathrm{O}\right), 4.5(1$ $\mathrm{H}, \mathrm{d}, \mathrm{CH}), 7.09-7.13(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.41-7.43(2 \mathrm{H}, \mathrm{d}, \mathrm{ArH})$, 7.52-7.64 (4 H, m, ArH), $8.05\left(2 \mathrm{H}, \mathrm{d}, \mathrm{NH}_{2}\right)$ and 10.8-11.11 (1 $\mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH})$.

6-Amino-1-benzamido-3-ethoxycarbonyl-5-methoxycarbonyl-4-(p-methoxyphenyl)-3,4-dihydro-2(1H)-pyridone 13h. This compound was obtained after 23 h of stirring in 75% yield, m.p. $193-195^{\circ} \mathrm{C}$ (toluene) (Found: C, 61.6; H, 5.4; N, 9.15. $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{7}$ requires $\mathrm{C}, 61.65 ; \mathrm{H}, 5.35 ; \mathrm{N}, 9.0$); $v_{\text {max }} / \mathrm{cm}^{-1} 3400$, 3260, 2960, 1740, 1710, 1670, 1610, 1520, 1470, 1440, 1320, 1250, $1200,1180,800$ and $720 ; \delta_{\mathrm{H}}$ (diastereoisomeric mixture; major isomer) $1.17(3 \mathrm{H}, \mathrm{t}, \mathrm{Me}), 3.5(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.73(4 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OMe}$, $\mathrm{CH}), 4.18\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}\right), 4.48(1 \mathrm{H}, \mathrm{d}, \mathrm{CH}), 6.8-6.85(3 \mathrm{H}, \mathrm{m}$,

ArH), 7.43-7.66(6 H, m, ArH), $8.08\left(2 \mathrm{H}, \mathrm{d}, \mathrm{NH}_{2}\right)$ and $10.8(1 \mathrm{H}$, brs, NH).

6-Amino-1-benzamido-4-(p-chlorophenyl)-3-ethoxycarbonyl5 -methoxycarbonyl-3,4-dihydro- $2(1 \mathrm{H})$-pyridone 13 i . This compound was obtained after 10 h in 74% yield, m.p. $198-200^{\circ} \mathrm{C}$ ($\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$) (Found: C , $58.45 ; \mathrm{H}, 4.7 ; \mathrm{N}, 8.95$. $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{ClN}_{3} \mathrm{O}_{6}$ requires $\mathrm{C}, 58.55 ; \mathrm{H}, 4.65 ; \mathrm{N}, 8.9$); $v_{\text {max }} / \mathrm{cm}^{-1}$ $3400,3300,2980,1740,1710,1670,1610,1520,1470,1440$, $1320,1250,1200,1170,800$ and $720 ; \delta_{\mathrm{H}}$ (diastereoisomeric mixture; major isomer) $1.2(3 \mathrm{H}, \mathrm{t}, \mathrm{Me}), 3.51(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, $3.84(1 \mathrm{H}, \mathrm{d}, \mathrm{CH}), 4.2\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}\right), 4.54(1 \mathrm{H}, \mathrm{d}, \mathrm{CH})$, $7.35(3 \mathrm{H}, \mathrm{d}, \mathrm{ArH}), 7.54-7.64(6 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 8.05(2 \mathrm{H}, \mathrm{d}$, $\left.\mathrm{NH}_{2}\right)$ and $11.0(1 \mathrm{H}$, br s, NH$)$.
6-Amino-1-benzamido-3-ethoxycarbonyl-5-methoxycarbonyl-4-(p-nitrophenyl)-3,4-dihydro-2(1H)-pyridone 13 j . This compound was obtained after 21 h of stirring in 78% yield, m.p. 166$168^{\circ} \mathrm{C}\left(\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}\right)$ (Found: $\mathrm{C}, 57.0 ; \mathrm{H}, 4.6 ; \mathrm{N}, 11.6$. $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{8}$ requires $\mathrm{C}, 57.25 ; \mathrm{H}, 4.55 ; \mathrm{N}, 11.6$); $v_{\text {max }} / \mathrm{cm}^{-1}$ $3400,3280,1740,1670,1610,1520,1450,1360,1260,1200,1170$ and $720 ; \delta_{\mathrm{H}}($ diastereoisomeric mixture; major isomer) $1.17(3 \mathrm{H}$, $\mathrm{t}, \mathrm{Me}), 3.48(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.92(1 \mathrm{H}, \mathrm{d}, \mathrm{CH}), 4.16(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{O}\right), 4.63(1 \mathrm{H}, \mathrm{d}, \mathrm{CH}), 7.08-7.22(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.45-7.53$ $(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.79(2 \mathrm{H}, \mathrm{d}, \mathrm{ArH}), 8.01(2 \mathrm{H}, \mathrm{d}, \mathrm{ArH}), 8.12(2 \mathrm{H}, \mathrm{d}$, $\left.\mathrm{NH}_{2}\right)$ and $10.6(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH})$.

6-Amino-1-benzamido-3,5-diethoxycarbonyl-4-phenyl-3,4-dihydro-2(1H)-pyridone $\mathbf{1 3 k}$. This compound was obtained after 7 h of refluxing in 78% yield, m.p. $179-180^{\circ} \mathrm{C}\left(\mathrm{EtOH}-\mathrm{H}_{2} \mathrm{O}\right)$ (Found: C, 63.75; H, 5.6; N, 9.35. $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{6}$ requires C, $63.85 ; \mathrm{H}, 5.55 ; \mathrm{N}, 9.3$); $v_{\max } / \mathrm{cm}^{-1} 3400,3280,2980,1730,1710$, $1690,1660,1610,1510,1470,1330,1300,1250,1200,1170$ and $700 ; \delta_{\mathrm{H}}$ (diastereoisomeric mixture) $1.05(3 \mathrm{H}, \mathrm{t}, \mathrm{Me}), 1.2(3 \mathrm{H}, \mathrm{t}$, Me), 3.76 ($1 \mathrm{H}, \mathrm{d}, \mathrm{CH}$), $3.94\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}\right), 4.19(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{O}\right), 4.53(1 \mathrm{H}, \mathrm{d}, \mathrm{CH}), 7.2-7.32(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.51-7.63$ $(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 8.05\left(2 \mathrm{H}, \mathrm{d}, \mathrm{NH}_{2}\right)$ and $11.08(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{C}}$ 13.94, $14.39(2 \times \mathrm{Me}), 30.68(\mathrm{C}-4), 55.41,58.5,61.57,75.58(\mathrm{C}-3$, $\left.2 \times \mathrm{CH}_{2} \mathrm{O}, \mathrm{C}-5\right), 126.65,127.51,128.27$ (2-C), 128.32 (2-C), 128.35 (2-C), $128.46,131.5,132.39,142.49$ (ArH), 154.19 (C-6) and $162.90,166.66,167.85$ and $168.23(4 \times \mathrm{CO})$.

6-Amino-1-benzamido-3,5-diethoxycarbonyl-4-(p-tolyl)-3,4-dihydro- $2(1 \mathrm{H})$-pyridone 131. This compound was obtained after 10 h of refluxing in 70% yield, m.p. $193-195^{\circ} \mathrm{C}\left(\mathrm{EtOH}-\mathrm{H}_{2} \mathrm{O}\right)$ (Found: C, 64.25; H, 5.95; N, 8.95. $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{6}$ requires C, $64.5 ; \mathrm{H}, 5.8 ; \mathrm{N}, 9.05) ; v_{\max } / \mathrm{cm}^{-1} 3400,3280,3200,2980,1730$, $1710,1690,1660,1610,1510,1470,1440,1320,1250,1190,1170$ and $700 ; \delta_{\mathrm{H}}$ (diastereoisomeric mixture) $1.05(3 \mathrm{H}, \mathrm{t}, \mathrm{Me}), 1.23$ ($3 \mathrm{H}, \mathrm{t}, \mathrm{Me}$), $2.26(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 3.76(1 \mathrm{H}, \mathrm{d}, \mathrm{CH}), 4.02(2 \mathrm{H}, \mathrm{d}$, $\left.\mathrm{CH}_{2} \mathrm{O}\right), 4.23\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}\right), 4.55(1 \mathrm{H}, \mathrm{d}, \mathrm{CH}), 7.07-7.2(3 \mathrm{H}$, $\mathrm{m}, \mathrm{ArH}), 7.4-7.68(6 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 8.14\left(2 \mathrm{H}, \mathrm{d}, \mathrm{NH}_{2}\right)$ and 11.0 ($1 \mathrm{H}, \mathrm{brs}, \mathrm{NH}$); $\delta_{\mathrm{C}} 14.18,14.67(2 \times \mathrm{Me}), 20.82,30.73(\mathrm{Me}, \mathrm{C}-4)$, $55.87,58.74,61.78$ and $75.82\left(\mathrm{C}-3,2 \times \mathrm{CH}_{2} \mathrm{O}, \mathrm{C}-5\right), 128.53$ (2 C), 128.59 (4 C), 129.16 (2 C), $131.77,132.63,135.89,139.61$ $(\mathrm{ArH}), 154.45(\mathrm{C}-6)$ and $163.21,166.88,168.15$ and 168.53 $(4 \times \mathrm{CO})$.

6-Amino-1-benzamido-3,5-diethoxycarbonyl-4-(p-methoxy-phenyl)-3,4-dihydro- $2(1 \mathrm{H}$)-pyridone 13 m . This compound was obtained after 8 h refluxing in 81% yield, m.p. $187-189^{\circ} \mathrm{C}$ (EtOH- $\mathrm{H}_{2} \mathrm{O}$) (Found: C, 62.3; H, 5.7; N, 8.7. $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{7}$ requires $\mathrm{C}, 62.35 ; \mathrm{H}, 5.6 ; \mathrm{N}, 8.75 \%$); $v_{\text {max }} / \mathrm{cm}^{-1} 3420,3400,3300$, $2980,1730,1700,1660,1610,1510,1470,1320,1250,1170$ and 700 ; δ_{H} (diastereoisomeric mixture) $1.04(3 \mathrm{H}, \mathrm{t}, \mathrm{Me}), 1.19(3 \mathrm{H}, \mathrm{t}$, $\mathrm{Me}), 3.48(1 \mathrm{H}, \mathrm{d}, \mathrm{CH}), 3.7(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.88\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}\right)$, $4.08\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}\right), 4.4(1 \mathrm{H}, \mathrm{d}, \mathrm{CH}), 6.82(2 \mathrm{H}, \mathrm{d}, \mathrm{ArH}), 7.13-$ $7.65(7 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 8.03\left(2 \mathrm{H}, \mathrm{d}, \mathrm{NH}_{2}\right), 10.8$ and $11.08(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, $\mathrm{NH}) ; \delta_{\mathrm{C}} 13.98$ and $14.46(2 \times \mathrm{Me}), 30.72,54.99$ and $55.71(\mathrm{C}-4$, $\left.\mathrm{CH}_{3} \mathrm{O}, \mathrm{C}-3\right), 58.54,61.54$ and $75.96\left(2 \times \mathrm{CH}_{2} \mathrm{O}, \mathrm{C}-5\right), 113.73$ (2 C), 128.32 (4 C), 128.63 (2 C), 131.54, 132.44, 134.44 (ArH), 154.09 and $158.06(\mathrm{C}-6, \mathrm{ArH})$ and $163.04,166.71,167.93$ and $168.30(4 \times \mathrm{CO})$.

6-Amino-1-benzamido-4-(p-chlorophenyl)-3,5-diethoxycar-bonyl-3,4-dihydro-2(1H)-pyridone 13n. This compound was obtained after 10 h refluxing in 55% yield, m.p. $193-195^{\circ} \mathrm{C}$ $\left(\mathrm{EtOH}-\mathrm{H}_{2} \mathrm{O}\right)$ (Found: C, 59.3; H, 5.0; N, 8.6. $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{ClN}_{3} \mathrm{O}_{6}$ requires $\mathrm{C}, 59.3 ; \mathrm{H}, 4.95 ; \mathrm{N}, 8.85$); $v_{\max } / \mathrm{cm}^{-1} 3400,3260,3200$, $2980,1730,1710,1700,1660,1610,1510,1470,1310,1240,1170$ and $700 ; \delta_{\mathrm{H}}($ diastereoisomeric mixture $) 1.06(3 \mathrm{H}, \mathrm{t}, \mathrm{Me}), 1.2$ ($3 \mathrm{H}, \mathrm{t}, \mathrm{Me}$), $3.81(1 \mathrm{H}, \mathrm{d}, \mathrm{CH}), 3.9\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}\right), 4.17(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{O}\right), 4.52(1 \mathrm{H}, \mathrm{d}, \mathrm{CH}), 7.24-7.34(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.49-7.64$ $(6 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 8.02\left(2 \mathrm{H}, \mathrm{d}, \mathrm{NH}_{2}\right)$ and $11.08(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{C}}$ 14.0 and $14.48(2 \times \mathrm{Me}), 30.75,55.16,58.66,61.73$ and 75.28 (C-4, $-3,2 \times \mathrm{CH}_{2} \mathrm{O}, \mathrm{C}-5$), 128.30 (2 C), 128.38 (4 C), 128.58 (2 C), 129.58, 131.46, 132.53 and 141.26 (ArH), 154.38 (C-6) and $162.83,166.81,167.7$ and $168.17(4 \times \mathrm{CO})$.

6-Amino-1-benzamido-3,5-diethoxycarbonyl-4-(p-nitro-phenyl)-3,4-dihydro-2(1H)-pyridone 130. This compound was obtained after 5 h of refluxing in 66% yield, m.p. $201-203^{\circ} \mathrm{C}$ (EtOH- $\mathrm{H}_{2} \mathrm{O}$) (Found: C, 57.95; H, 4.9; N, 11.25. $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{8}$ requires $\mathrm{C}, 58.05 ; \mathrm{H}, 4.85 ; \mathrm{N}, 11.3$); $v_{\max } / \mathrm{cm}^{-1} 3400,3280,3200$, $2980,1730,1710,1700,1660,1610,1520,1470,1350,1320,1250$, 1170 and $700 ; \delta_{\mathrm{H}}($ diastereoisomeric mixture; major isomer) 1.03 ($3 \mathrm{H}, \mathrm{t}, \mathrm{Me}$), 1.19 ($3 \mathrm{H}, \mathrm{t}, \mathrm{Me}$), $3.49(1 \mathrm{H}, \mathrm{d}, \mathrm{CH}), 3.96(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{O}\right), 4.14\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}\right), 4.66(1 \mathrm{H}, \mathrm{d}, \mathrm{CH}), 7.49-7.64(5 \mathrm{H}$, $\mathrm{m}, \mathrm{ArH}), 7.82(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 8.03$ ($2 \mathrm{H}, \mathrm{d}, \mathrm{ArH}$), 8.14 ($2 \mathrm{H}, \mathrm{d}$, $\left.\mathrm{NH}_{2}\right)$ and $11.16(1 \mathrm{H}$, br s, NH$) ; \delta_{\mathrm{C}} 13.94$ and $14.3(2 \times \mathrm{Me})$, $30.67,54.16,58.07,61.82$ and $74.78\left(\mathrm{C}-4,-3,2 \times \mathrm{CH}_{2} \mathrm{O}, \mathrm{C}-5\right)$, $123.01,123.98,128.06,128.59,128.80,128.90,129.48,131.31$, $131.89,132.98,146.51$ and $150.10(\mathrm{ArH}), 154.63(\mathrm{C}-6)$ and $162.40,166.77,167.30$ and $168.39(4 \times \mathrm{CO})$.

7-Aryl-6-cyano-8-methoxycarbonyl-2-methyl-3H-[1,2,4]tri-azolo[1,5-a]pyridine-5-ones 15: General Procedure.-1,6-Di-amino-4-aryl-3-cyano-5-methoxycarbonyl-2(1H)-pyridone 14 $(1.4 \mathrm{mmol})$ was suspended in acetic anhydride $\left(5 \mathrm{~cm}^{3}\right)$ and the reaction mixture refluxed for 2 h . With time, a solid precipitated and the reaction mixture was stirred at room temperature overnight. The precipitate was then filtered off and recrystallized from the appropriate solvent.

6-Cyano-8-methoxycarbonyl-2-methyl-7-phenyl-3H-[1,2,4]triazolo $[1,5-\mathrm{a}]$ pyridin-5-one 15a. This compound was obtained in 51% yield, m.p. $299-300^{\circ} \mathrm{C}$ (EtOH) (Found: C, 62.25; H, 3.95; $\mathrm{N}, 18.1 . \mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{3}$ requires $\mathrm{C}, 62.35 ; \mathrm{H}, 3.9 ; \mathrm{N}, 18.2$); $v_{\max } / \mathrm{cm}^{-1} 3300-2500,2960,2220,1730,1700,1680,1570,1500$, $1450,1380,1200,1140$ and $700 ; \delta_{\mathrm{H}} 2.58(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 3.48(3 \mathrm{H}, \mathrm{s}$, OMe) and $7.26-7.46(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}} 11.72$ and $51.70(\mathrm{Me}$, $\mathrm{OMe}), 90.60$ and $92.12(\mathrm{C}-6,-8), 116.61(\mathrm{CN}), 127.55(2 \mathrm{C})$, $127.99(2 \mathrm{C}), 128.54,137.58(\mathrm{ArH}), 146.86,153.35,153.99$ and $157.65(\mathrm{C}-7,-2,-8 \mathrm{a},-5)$ and $163.14\left(\mathrm{CO}_{2}\right) ; m / z$ (relative intensity) $308\left(\mathrm{M}^{+}, 1\right), 295(100), 265$ (79), 239 (1) and 147 (9).

6-Cyano-8-methoxycarbonyl-2-methyl-7-(p-tolyl)-3H-[1,2,-$4]$-triazolo $[1,5-\mathrm{a}]$ pyridin-5-one 15 b . This compound was obtained in 46% yield, m.p. $324-325^{\circ} \mathrm{C}$ (EtOH) (Found: C, 63.1; $\mathrm{H}, 4.4 ; \mathrm{N}, 17.25 . \mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{3}$ requires $\mathrm{C}, 63.35 ; \mathrm{H}, 4.35 ; \mathrm{N}$, 17.4); $v_{\max } / \mathrm{cm}^{-1} 3300-2500,2960,2220,1730,1700,1570,1500$, $1450,1380,1200,1140$ and $700 ; \delta_{\mathrm{H}} 2.39(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.57(3 \mathrm{H}, \mathrm{s}$, Me), 3.51 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 7.16 ($2 \mathrm{H}, \mathrm{d}, \mathrm{ArH}$) and $7.26(2 \mathrm{H}, \mathrm{d}$, ArH) ; $\delta_{\mathrm{C}} 11.77$ (Me-triazolo), 21.15 and 51.78 (Me, OMe), 90.00 and $92.22(\mathrm{C}-6,-8), 116.80(\mathrm{CN}), 127.60(2 \mathrm{C}), 128.61(2 \mathrm{C})$, 134.62 and $137.92(\mathrm{ArH}), 146.88,153.37,154.07$ and $157.79(\mathrm{C}-7$, $-2,-8 \mathrm{a},-5)$ and $163.20\left(\mathrm{CO}_{2}\right)$.

6-Cyano-8-methoxycarbonyl-7-(p-methoxyphenyl)-2-methyl$3 \mathrm{H}-[1,2,4]$ triazolo [1,5-a $]$ pyridin-5-one 15c. This compound was obtained in 45% yield, m.p. $298-299^{\circ} \mathrm{C}$ (MeCN) (Found: C, $60.25 ; \mathrm{H}, 4.4 ; \mathrm{N}, 16.8 . \mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{4}$ requires $\mathrm{C}, 60.35 ; \mathrm{H}, 4.15 ; \mathrm{N}$, 16.55); $v_{\text {max }} / \mathrm{cm}^{-1} 3300-2500,2960,2220,1730,1700,1570,1500$, $1450,1380,1200,1140$ and $700 ; \delta_{\mathrm{H}} 2.57(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 3.52(3 \mathrm{H}, \mathrm{s}$, OMe), 3.82 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 7.01 ($2 \mathrm{H}, \mathrm{d}, \mathrm{ArH}$) and 7.21 ($2 \mathrm{H}, \mathrm{d}$, ArH).

7-(p-Chlorophenyl)-6-cyano-8-methoxycarbonyl-2-methyl$3 \mathrm{H}-[1,2,4]$ triazolo $[1,5-\mathrm{a}]$ pyridin-5-one 15d. This compound was obtained in 87% yield, m.p. $325-326^{\circ} \mathrm{C}$ (DMF) (Found: C, 55.9; $\mathrm{H}, 3.5 ; \mathrm{Cl}, 10.7 ; \mathrm{N}, 16.4 . \mathrm{C}_{16} \mathrm{H}_{11} \mathrm{ClN}_{4} \mathrm{O}_{3}$ requires $\mathrm{C}, 56.05$; $\mathrm{H}, 3.2 ; \mathrm{Cl}, 10.35 ; \mathrm{N}, 16.35) ; v_{\max } / \mathrm{cm}^{-1} 3300-2500,2960,2220$, $1730,1700,1570,1500,1450,1380,1300,1250,1200,1140$ and $700 ; \delta_{\mathrm{H}} 2.58(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 3.54(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 7.31(2 \mathrm{H}, \mathrm{d}, \mathrm{ArH})$ and $7.53(2 \mathrm{H}, \mathrm{d}, \mathrm{ArH})$.

6-Cyano-8-methoxycarbonyl-2-methyl-7-(p-nitrophenyl)-3H-[1,2,4]triazolo[1,5-a]pyridin-5-one 15e. This compound was obtained in 56% yield, m.p. $299-300^{\circ} \mathrm{C}$ (MeCN) (Found: C, 54.4; H, 3.25; N, 20.1. $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{~N}_{5} \mathrm{O}_{5}$ requires $\mathrm{C}, 54.4 ; \mathrm{H}, 3.1 ; \mathrm{N}$, 19.85); $v_{\max } / \mathrm{cm}^{-1} 3300-2500,2960,2220,1730,1700,1600,1570$, $1500,1420,1350,1300,1250,1200,1140$ and $700 ; \delta_{\mathrm{H}} 2.6(3 \mathrm{H}, \mathrm{s}$, $\mathrm{Me}), 3.54(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 7.6(2 \mathrm{H}, \mathrm{d}, \mathrm{ArH})$ and $8.34(2 \mathrm{H}, \mathrm{d}, \mathrm{ArH})$; $\delta_{\mathrm{C}} 11.83$ and $52.01(\mathrm{Me}, \mathrm{OMe}), 90.10$ and $92.03(\mathrm{C}-6,-8), 116.38$ (CN), 123.39 (2 C), 129.28 (2 C), 144.74, 146.97 (ArH), 147.60, $153.74,153.91$ and $155.62(\mathrm{C}-6,-2,-8 \mathrm{a},-5)$ and $162.68\left(\mathrm{CO}_{2}\right)$.

Acknowledgements

Support of this work by grants from CICYT of Spain (PB-890495) and (PB-89-0101) is gratefully acknowledged. One of the authors (A. H.) is grateful to Ministerio de Asuntos Exteriores of Spain for a research fellowship.

References

1 N. Martín, M. Quinteiro, C. Seoane, J. L. Soto, F. Fonseca, F. Florencio and J. Sanz, J. Org. Chem., 1990, 55, 2259; M. J. Callejo, P. Lafuente, N. Martín, M. Quinteiro, C. Seoane and J. L. Soto, J. Chem. Soc., Perkin Trans. 1, 1990, 1687; Ali Hadi, N. Martín, C. Seoane, J. L. Soto, A. Alberto and F. H. Cano J. Heterocycl. Chem., 1992, 1229.
2 Ali Hadi, N. Martin, C. Seoane and J. L. Soto, J. Chem. Soc., Perkin Trans. 1, 1993, 1045.
3 C. R. Hardy, The Chemistry of Pyrazolopyridines, in Advances in Heterocyclic Chemistry, Academic press, 1984, G. P. Ellis, Synthesis of fused Heterocycles, Wiley, 1987, vol. 36, ch. 67.
4 C. Seoane, J. L. Soto and P. Zamorano, Org. Prep. Proced. Int., 1984, 16, 393.

5 Baldwin nomenclature for classifying ring closures: see J. E. Baldwin, J. Chem. Soc., Chem. Commun., 1976, 734; J. E. Baldwin and M. J. Lusch, Tetrahedron, 1982, 38, 2939.
6 C. Aparicio, N. Martin, M. Quinteiro, C. Seoane, J. L. Soto, J. A. Valdés and S. Velazquez, J. Chem. Soc., Perkin Trans. I, 1989, 1975.

7 F. H. Allen, O. Kennard and R. Taylor, Acc. Chem. Res., 1983, 16, 146.
8 J. Lykeberg, Acta Chem. Scand., Ser. B, 1978, 332, 56.
9 R. G. Desiraju, Crystal Engineering, Elsevier, Amsterdam, 1989.
10 A. Albert, F. H. Cano, CONTACTOS. Computer program to study interactions between aromatic rings. Instituto Rocasolano C.S.I.C. 1991 (to be published).
11 G. O'Callaghan, J. Chem. Soc. C, 1971, 207.
12 B. Corson and R. Stoughton, J. Am. Chem. Soc., 1928, 50, 2825; A. C. Cope and K. E. Hoyle, J. Am. Chem. Soc., 1941, 63, 733.

13 G. Cascarano and C. Giacovazzo, Dip. Geomineralogico-Univ. of Bari. M. G. Burla and G. Polidori, Scienze de la terra-Univ. of Perugia; R. Spagna and M. Camalli, Ist. Strutt. Chimica CNRMonterrotondo Staziano, Roma. Viterbo, D., Dip. di Chimica, Univ. della Calabria, Consenza. SIR 88. (1988).
14 The DirDif Program system. P. T. Beurskens, G. Admiraal, H. Behm, G. Beurskens, W. P. Bosman, S. Garcia-Granda, R. O. Gould and C. Smykalla, Z. Für Kristallographie, 1990, Suppl. 4, 99.

15 M. Martinez-Ripoll and F. H. Cano, PESOS. A computer program for the automatic treatment of weighting schemes. Instituto Rocasolano C.S.I.C. Serrano 119. 28006. Madrid, Spain.
16 International Tables for X-ray Crystallography (1974). Vol. IV, Birmingham press, Birmingham.
17 S. R. Hall and J. M. Stewart (1990) XTAL System, University of Western Australia.
18 J. M. Stewart, F. A. Kunddell and J. C. Baldwin, 1976: The X-ray76 computer Science Center, University of Maryland, College Park, Maryland, EEUU.
19 J. Fayos and M. Martinez-Ripol, HSEARCH A computer program for the geometric calculations of H atom coordinates, Instituto Rocasolano, C.S.I.C. Madrid (1978).
20 M. Nardeli, PARST, (1983) Computers Chemistry 1983, 7 (3), 95.
21 Johnson, ORTEP, report ORNL-3794; Oak Ridge National Laboratory: Oak Ridge, TN, 1965.
22 W. J. S. Motherwell, PLUTO, a program for plotting crystal and molecular structures, Cambridge University, England, 1978.

Paper 3/01932B
Received 5th April 1993
Accepted 26th April 1993

